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Abstract
We show that given a nonvanishing particular solution of the equation

(divp grad + q)u = 0
the corresponding differential operator can be factorized into a product of two
first-order operators. The factorization allows us to reduce the above equation
to a first-order equation which in a two-dimensional case is a Vekua equation
of a special form. Under quite general conditions on the coefficients p and q,
we obtain an algorithm which allows us to construct in explicit form positive
formal powers (solutions of the Vekua equation generalizing the usual powers
(z − z0)

n, n = 0, 1, . . .). This result means that under quite general conditions
one can construct an infinite system of exact solutions of the above equation
explicitly and, moreover, at least when p and q are real valued this system
will be complete in ker(divp grad + q) in the sense that any solution of the
above equation in a simply connected domain � can be represented as an
infinite series of obtained exact solutions which converges uniformly on any
compact subset of �. Finally, we give a similar factorization of the operator
(divp grad + q) in a multidimensional case and obtain a natural generalization
of the Vekua equation which is related to second-order operators in a similar
way as its two-dimensional prototype does.

PACS numbers: 02.30.Fn, 02.30.Jr
Mathematics Subject Classification: 30G20, 30G35, 35J10, 35J15

1. Introduction

Consider the one-dimensional stationary Schrödinger equation

y ′′ + v(x)y = 0. (1)
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It is well known that given a nonvanishing particular solution y0 of (1), the Schrödinger
operator can be factorized as

∂2 + v(x) =
(

∂ +
y ′

0(x)

y0(x)

) (
∂ − y ′

0(x)

y0(x)

)
(2)

and as a consequence the general solution of (1) can be obtained.
In [18], it was shown that a similar factorization of a stationary Schrödinger operator is

available in two dimensions. One of the results of the present work is the factorization of a
more general two-dimensional elliptic operator (divp grad + q) in a form similar to (2). The
factorization allows us to reduce

(divp grad + q)u = 0 (3)

to a Vekua equation of a special form. This Vekua equation becomes bicomplex if p or q
are complex functions. One complex component of a solution of the Vekua equation (its real
part when p and q are real valued) necessarily satisfies equation (3) and the other satisfies an
associated equation having the form of (3) but with different coefficients p and q. This situation
is a generalization of the fact that real and imaginary parts of an analytic function are harmonic,
and likewise for any harmonic function in a simply connected domain its harmonic conjugate
can be constructed, we obtain explicit formulae for constructing ‘conjugate’ solutions of the
associated equations of the form (3). In the case p ≡ 1 and q ≡ 0, these formulae turn into
the well known from complex analysis formulae for the construction of conjugate harmonic
functions.

In [18], we established that under quite general conditions the positive formal powers
corresponding to the Vekua equation (the pseudoanalytic functions generalizing the usual
powers (z − z0)

n, n = 0, 1, . . .) can be constructed explicitly. Here, we develop this result
and obtain that by a given nonvanishing particular solution of equation (3) under quite
general conditions one can construct an infinite system of exact solutions of (3) explicitly
and, moreover, at least when p and q are real valued this system will be complete in
ker(divp grad + q) in the sense that any solution of (3) in a simply connected domain �

can be represented as an infinite series of obtained exact solutions which converges uniformly
on any compact subset of �.

In the final part of the present work, we obtain a factorization of the operator
(divp grad + q) in a multidimensional situation and reduce (3) to a first-order equation
which generalizes the Vekua equation.

2. Preliminaries

A bicomplex number has the form

q = Q1 + Q2k

where Q1 = q0 + iq1,Q2 = q2 + iq3, qj ∈ R, j = 0, 3; i2 = k2 = −1, ik = ki.
We will say that Q1 and Q2 are complex components of the bicomplex number q. Denote

q = Q1 − Q2k. The corresponding conjugation operator we denote by C: Cq = q. We will
say that q is scalar if Q2 = 0. That is in this case q is a usual complex number. Q2 is called
the vector part of Q. Sometimes we use the notation Q1 = Sc(Q),Q2 = Vec(Q).

The set of bicomplex zero divisors, that is of nonzero elements q = Q1+Q2k, {Q1,Q2} ⊂
C such that

qq = (Q1 + Q2k)(Q1 − Q2k) = 0, (4)

we denote by S.
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For further information on bicomplex numbers we refer to [24].
We will consider the variable z = x + ky, where x and y are the real variables and the

corresponding differential operators

∂z = 1
2 (∂x + k∂y) and ∂z = 1

2 (∂x − k∂y).

Notation Wz or Wz means the application of ∂z or ∂z respectively to a bicomplex function
W(z).

Note that if we consider

∂zϕ = � (5)

in a whole complex plane or in a convex domain, where � = �1 + k�2 is a given bicomplex-
valued function such that its scalar part �1 and vector part �2 satisfy

∂y�1 + ∂x�2 = 0, (6)

then there exists a scalar solution of (5) which can be reconstructed up to an arbitrary scalar
constant c in the following way:

ϕ(x, y) = 2

(∫ x

x0

�1(η, y) dη −
∫ y

y0

�2(x0, ξ) dξ

)
+ c (7)

where (x0, y0) is an arbitrary fixed point in the domain of interest.
By A we denote the integral operator in (7):

A[�](x, y) = 2

(∫ x

x0

�1(η, y) dη −
∫ y

y0

�2(x0, ξ) dξ

)
+ c.

Note that formula (7) can be easily extended to any simply connected domain by considering
the integral along an arbitrary rectifiable curve � leading from (x0, y0) to (x, y)

ϕ(x, y) = 2

(∫
�

�1 dx − �2 dy

)
+ c.

Thus if � satisfies (6), there exists a family of scalar functions ϕ such that ∂zϕ = �, given by
the formula ϕ = A[�].

In a similar way, we define the operator A corresponding to ∂z:

A[�](x, y) = 2

(∫ x

x0

�1(η, y) dη +
∫ y

y0

�2(x0, ξ) dξ

)
+ c.

3. Solutions of second-order elliptic equations as scalar parts of bicomplex
pseudoanalytic functions

Consider

(−� + ν)f = 0 (8)

in some domain � ⊂ R2, where � = ∂2

∂x2 + ∂2

∂y2 , ν and f are the complex-valued (in our terms
scalar) functions. We assume that f is a twice continuously differentiable function.

Theorem 1. Let f be a nonvanishing in � particular solution of (8). Then for any complex-
valued (scalar) function ϕ ∈ C2(�) the following equalities hold:

1

4
(� − ν)ϕ =

(
∂z +

fz

f
C

) (
∂z − fz

f
C

)
ϕ =

(
∂z +

fz

f
C

) (
∂z − fz

f
C

)
ϕ. (9)
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Proof. Consider(
∂z +

fz

f
C

) (
∂z − fz

f
C

)
ϕ = 1

4
�ϕ − |∂zf |2

f 2
ϕ − ∂z

(
∂zf

f

)
ϕ

= 1

4

(
�ϕ − �f

f
ϕ

)
= 1

4
(� − ν)ϕ. (10)

Thus, we have the first equality in (9). Now the application of C to both sides of (10) gives us
the second equality in (9). �

In the case of a real-valued potential ν this theorem was proved in [18].
The following statement is known in a form of a substitution (see, e.g., [23]). Here, we

formulate it as an operator relation.

Proposition 2. Let p and q be complex-valued functions, p ∈ C2(�) and p �= 0 in �. Then

divp grad + q = p1/2(� − r)p1/2 in �, (11)

where

r = �p1/2

p1/2
− q

p
.

Proof. The easily verified relation

divp grad = p1/2

(
� − �p1/2

p1/2

)
p1/2 (12)

is well known (see, e.g., [25]). Adding to both sides of (12) the term q (and representing it on
the right-hand side as p1/2(q/p)p1/2) gives us (11). �

Theorem 3. Let u0 be a nonvanishing in � particular solution of

(divp grad + q)u = 0 in �. (13)

Then under the conditions of proposition 2 for any complex-valued (scalar) continuously
twice differentiable function ϕ the following equality holds:

1

4
(divp grad + q)ϕ = p1/2

(
∂z +

fz

f
C

) (
∂z − fz

f
C

)
p1/2ϕ, (14)

where

f = p1/2u0. (15)

Proof. This is based on (9). From (11) we have that if u0 is a solution of (13) then the
function (15) is a solution of

(� − r)f = 0. (16)

Then combining (11) and (9) we obtain (14). �

Remark 4. According to (12), � − r = f −1 divf 2 gradf −1 where f is a solution of (16).
Then from (11) we have

divp grad + q = p1/2f −1 divf 2 gradf −1p1/2. (17)

Taking (15) into account we obtain

divp grad + q = u−1
0 divpu2

0 grad u−1
0 in �.
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Remark 5. Let q ≡ 0. Then u0 can be chosen as u0 ≡ 1. Hence, (14) gives us the equality

1

4
div(p grad ϕ) = p1/2

(
∂z +

∂zp
1/2

p1/2
C

) (
∂z − ∂zp

1/2

p1/2
C

)
(p1/2ϕ).

In what follows we suppose that in � there exists a nonvanishing particular solution
of (13) which we denote by u0.

Let f be a scalar function of x and y. Consider the bicomplex Vekua equation

Wz = fz

f
W in �. (18)

Denote W1 = Sc W and W2 = Vec W.

Remark 6. [18] Equation (18) can be written as follows:

f ∂z(f
−1W1) + kf −1∂z(f W2) = 0. (19)

Theorem 7. Let W = W1 + W2k be a solution of (18). Then U = f −1W1 is a solution of

div(f 2∇U) = 0 in �, (20)

and V = f W2 is a solution of

div(f −2∇V ) = 0 in �, (21)

the function W1 is a solution of the stationary Schrödinger equation

−�W1 + r1W1 = 0 in � (22)

with r1 = �f/f, and W2 is a solution of the associated Schrödinger equation

−�W2 + r2W2 = 0 in � (23)

where r2 = 2(∇f )2/f 2 − r1 and (∇f )2 = f 2
x + f 2

y .

Proof. To prove the first part of the theorem we use the form of equation (18) given in
remark 6. Multiplying (19) by f and applying ∂z gives

∂z(f
2∂z(f

−1W1)) +
k

4
�(f W2) = 0

from where we have that Sc(∂z(f
2∂z(f

−1W1))) = 0 which is equivalent to (20) where
U = f −1W1.

Multiplying (19) by f −1 and applying ∂z gives

1

4
�(f −1W1) + k∂z(f

−2∂z(f W2)) = 0

from where we have that Sc(∂z(f
−2∂z(f W2))) = 0 which is equivalent to (21) where

V = f W2.
From (12) we have

(� − r1)W1 = f −1div(f 2∇(f −1W1)).

Hence, from the just proven equation (20) we obtain that W1 is a solution of (22).
In order to obtain equation (23) for W2 it should be noted that

f div(f −2∇(f W2)) = (� − r2)W2. �



12412 V V Kravchenko

In the case of a real-valued function f the relation between solutions of (18) and
equations (20), (21) was observed in [20] and between solutions of (18) and equations (22),
(23) in [18].

Remark 8. Observe that the pair of functions

F = f and G = k

f
(24)

is a generating pair for (18). This allows us to rewrite (18) in the form of an equation for
pseudoanalytic functions of second kind:

ϕzf + ψz

k

f
= 0, (25)

where ϕ and ψ are the scalar functions. If ϕ and ψ satisfy (25) then W = ϕf + ψ k
f

is a
solution of (18) and vice versa.

Denote w = ϕ + ψk. Then from (25) we have

(w + w)zf + (w − w)z
1

f
= 0,

which is equivalent to

wz = 1 − f 2

1 + f 2
wz. (26)

The relation between (26) and (20), (21) in the case of a real-valued function f 2 was observed
in [2] and resulted to be essential for solving the Calderón problem in the plane.

Theorem 9. Let W = W1 + W2k be a solution of (18). Assume that f = p1/2u0, where u0

is a nonvanishing solution of (13) in �. Then u = p−1/2W1 is a solution of (13) in � and
v = p1/2W2 is a solution of(

div
1

p
grad + q1

)
v = 0 in �, (27)

where

q1 = − 1

p

(
q

p
+ 2

〈∇p

p
,
∇u0

u0

〉
+ 2

(∇u0

u0

)2
)

. (28)

Proof. According to theorem 7, the function f −1W1 is a solution of (20). From (17) we have
that

p−1/2(divp grad + q)(p−1/2W1) = f −1div(f 2∇ (
f −1W1

)
)

from which we obtain that u = p−1/2W1 is a solution of (13).
In order to obtain the second assertion of the theorem, let us show that

p1/2

(
div

1

p
grad + q1

)
(p1/2ϕ) = f div(f −2∇(f ϕ))

for any scalar ϕ ∈ C2(�). According to (12),

f div(f −2∇(f ϕ)) =
(

� − �f −1

f −1

)
ϕ = (� − r2) ϕ.

Straightforward calculation gives us the following equality:

�f −1

f −1
= 3

4

(∇p

p

)2

− 1

2

�p

p
+

〈∇p

p
,
∇u0

u0

〉
− �u0

u0
+ 2

(∇u0

u0

)2

.
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From the condition that u0 is a solution of (13) we obtain the equality

−�u0

u0
= q

p
+

〈∇p

p
,
∇u0

u0

〉
.

Thus,

�f −1

f −1
= 3

4

(∇p

p

)2

− 1

2

�p

p
+ 2

〈∇p

p
,
∇u0

u0

〉
+

q

p
+ 2

(∇u0

u0

)2

.

Note that

�p−1/2

p−1/2
= 3

4

(∇p

p

)2

− 1

2

�p

p
.

Then

�f −1

f −1
= �p−1/2

p−1/2
+ 2

〈∇p

p
,
∇u0

u0

〉
+

q

p
+ 2

(∇u0

u0

)2

.

Now taking q1 in the form (28) we obtain the result from (11). �

Theorem 10 [18]. Let W1 be a solution of (22) in a simply connected domain �. Then the
function W2, solution of (23) such that W = W1 + W2k is a solution of (18) is constructed
according to

W2 = f −1A(kf 2∂z(f
−1W1)). (29)

Given a solution W2 of (23), the corresponding solution W1 of (22) such that W =
W1 + W2k is a solution of (18) is constructed as follows:

W1 = −f A(kf −2∂z(f W2)). (30)

Remark 11. When in (22) r1 ≡ 0 and f ≡ 1, equalities (29) and (30) turn into the well-known
formulae in complex analysis for constructing conjugate harmonic functions.

Corollary 12. Let U be a solution of (20). Then a solution V of (21) such that

W = f U + kf −1V

is a solution of (18) is constructed according to

V = A(kf 2Uz).

Conversely, given a solution V of (21), the corresponding solution U of (20) can be constructed
as follows:

U = −A(kf −2Vz).

Proof. Consists in substitution of W1 = f U and of W2 = f −1V into (29) and (30). �

Corollary 13. Let f = p1/2u0, where u0 is a nonvanishing solution of (13) in a simply
connected domain � and u be a solution of (13). Then a solution v of (27) with q1 defined
by (28) such that W = p1/2u + kp−1/2v is a solution of (18) is constructed according to

v = u−1
0 A

(
kpu2

0∂z

(
u−1

0 u
))

.

Let v be a solution of (27), then the corresponding solution u of (13) such that
W = p1/2u + kp−1/2v is a solution of (18) is constructed according to

u = −u0A
(
kp−1u−2

0 ∂z(u0v)
)
.

Proof. Consists in substitution of f = p1/2u0,W1 = p1/2u and W2 = p−1/2v into (29)
and (30). �
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4. Some definitions and results from pseudoanalytic theory for bicomplex functions

4.1. Generating pair, derivative and antiderivative

Following [5] we introduce the notion of a bicomplex generating pair.

Definition 14. A pair of bicomplex functions F = F1 + F2k and G = G1 + G2k possessing in
� partial derivatives with respect to the real variables x and y is said to be a generating pair
if it satisfies the inequality

Vec(FG) �= 0 in �.

The following expressions are called characteristic coefficients of the pair (F,G)

a(F,G) = −FGz − FzG

FG − FG
, b(F,G) = FGz − FzG

FG − FG
,

A(F,G) = −FGz − FzG

FG − FG
, B(F,G) = FGz − FzG

FG − FG
.

Every bicomplex function W defined in a subdomain of � admits the unique representation
W = φF + ψG where the functions φ and ψ are scalar.

The (F,G)-derivative Ẇ = d(F,G)W

dz
of a function W exists and has the form:

Ẇ = φzF + ψzG = Wz − A(F,G)W − B(F,G)W (31)

if and only if

φzF + ψzG = 0. (32)

This last equation can be rewritten in the following form

Wz = a(F,G)W + b(F,G)W (33)

which we call the bicomplex Vekua equation. Solutions of this equation are called (F,G)-
pseudoanalytic functions.

Definition 15. Let (F,G) and (F1,G1) be two generating pairs in �. (F1,G1) is called
successor of (F,G) and (F,G) is called predecessor of (F1,G1) if

a(F1,G1) = a(F,G) and b(F1,G1) = −B(F,G).

The importance of this definition becomes obvious from the following statement.

Theorem 16. Let W be an (F,G)-pseudoanalytic function and let (F1,G1) be a successor of
(F,G). Then Ẇ is an (F1,G1)-pseudoanalytic function.

Definition 17. Let (F,G) be a generating pair. Its adjoint generating pair (F,G)∗ =
(F ∗,G∗) is defined by

F ∗ = − 2F

FG − FG
, G∗ = 2G

FG − FG
.

The (F,G)-integral is defined as follows:∫
�

W d(F,G)z = F(z1)Sc
∫

�

G∗W dz + G(z1)Sc
∫

�

F ∗W dz

where � is a rectifiable curve leading from z0 to z1.
If W = φF +ψG is an (F,G)-pseudoanalytic function where φ and ψ are scalar functions

then ∫ z

z0

Ẇ d(F,G)z = W(z) − φ(z0)F (z) − ψ(z0)G(z). (34)

This integral is path independent and represents the (F,G)-antiderivative of Ẇ .
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4.2. Generating sequences and Taylor series in formal powers

Following [5] we introduce the following definitions and results.

Definition 18. A sequence of generating pairs {(Fm,Gm)} ,m = 0,±1,±2, . . . , is called a
generating sequence if (Fm+1,Gm+1) is a successor of (Fm,Gm). If (F0,G0) = (F,G), we
say that (F,G) is embedded in {(Fm,Gm)}.

Theorem 19. Let (F,G) be a generating pair in �. Let �1 be a bounded domain, �1 ⊂ �.
Then (F,G) can be embedded in a generating sequence in �1.

Definition 20. A generating sequence {(Fm,Gm)} is said to have period µ > 0 if (Fm+µ,Gm+µ)

is equivalent to (Fm,Gm), that is their characteristic coefficients coincide.

Let W be an (F,G)-pseudoanalytic function. Using a generating sequence in which
(F,G) is embedded we can define the higher derivatives of W by the recursion formula

W [0] = W ; W [m+1] = d(Fm,Gm)W
[m]

dz
, m = 1, 2, . . . .

Definition 21. The formal power Z(0)
m (a, z0; z) with centre at z0 ∈ �, coefficient a and

exponent 0 is defined as the linear combination of the generators Fm, Gm with complex
constant coefficients λ, µ chosen so that λFm(z0) + µGm(z0) = a. The formal powers with
exponents n = 1, 2, . . . are defined by the recursion formula

Z(n+1)
m (a, z0; z) = (n + 1)

∫ z

z0

Z
(n)
m+1(a, z0; ζ ) d(Fm,Gm)ζ. (35)

This definition implies the following properties.

(1) Z(n)
m (a, z0; z) is an (Fm,Gm)-pseudoanalytic function of z.

(2) If a′ and a′′ are scalar constants, then

Z(n)
m (a′ + ka′′, z0; z) = a′Z(n)

m (1, z0; z) + a′′Z(n)
m (k, z0; z).

(3) The formal powers satisfy the differential relations

d(Fm,Gm)Z
(n)
m (a, z0; z)

dz
= nZ

(n−1)
m+1 (a, z0; z).

(4) The asymptotic formulae

Z(n)
m (a, z0; z) ∼ a(z − z0)

n, z → z0 (36)

hold.

Assume now that

W(z) =
∞∑

n=0

Z(n)(a, z0; z) (37)

where the absence of the subindex m means that all the formal powers correspond to the same
generating pair (F,G), and the series converges uniformly in some neighbourhood of z0. It
can be shown that the uniform limit of pseudoanalytic functions is pseudoanalytic and that a
uniformly convergent series of (F,G)-pseudoanalytic functions can be (F,G) differentiated
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term by term. Hence, the function W in (37) is (F,G)-pseudoanalytic and its rth derivative
admits the expansion

W [r](z) =
∞∑

n=r

n(n − 1) · · · (n − r + 1)Z(n−r)
r (an, z0; z).

From this the Taylor formulae for the coefficients are obtained

an = W [n](z0)

n!
. (38)

Definition 22. Let W(z) be a given (F,G)-pseudoanalytic function defined for small values
of |z − z0|. The series

∞∑
n=0

Z(n)(a, z0; z) (39)

with the coefficients given by (38) is called the Taylor series of W at z0, formed with formal
powers.

The Taylor series always represents the function asymptotically:

W(z) −
N∑

n=0

Z(n)(a, z0; z) = O(|z − z0|N+1), z → z0, (40)

for all N.
If the series (39) converges uniformly in a neighbourhood of z0, it converges to the

function W .

4.3. Convergence theorems

The statements given in this subsection were obtained by Bers [5], [7] and Agmon and Bers
[1]. Their proof in a usual complex case was based on the so-called similarity principle. The
similarity principle in general is not valid in a bicomplex situation. Here, we correct the
corresponding statement which unfortunately in [9] was formulated with a mistake.

Theorem 23 (similarity principle). Let w be a regular solution of (33) in a domain � such
that its values are not zero divisors at any point. Then the bicomplex function � = w · eh,
where

h(z) = 1

π

∫
�

g(τ) dτ

τ − z
,

g(z) =
a(F,G)(z) + b(F,G)(z)

w(z)

w(z)
if w(z) �= 0, z ∈ �

a(F,G)(z) + b(F,G)(z) if w(z) = 0, z ∈ �

is a solution of the equation ∂z� = 0 in �.

The proof is completely analogous to that for a complex case (see [26]).
In the case when the coefficients in (33) are usual complex functions (with respect to k)

the following theorems regarding the convergence of formal Taylor expansions are valid.

Theorem 24 [5]. The formal Taylor expansion (39) of a pseudoanalytic function in formal
powers defined by a periodic generating sequence converges in some neighbourhood of the
centre.
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Definition 25 [5]. A generating pair (F,G) is called complete if these functions are defined
and satisfy the Hölder condition for all finite values of z, the limits F(∞),G(∞) exist,
Vec(F (∞)G(∞)) > 0 and the functions F(1/z),G(1/z) also satisfy the Hölder condition.
A complete generating pair is called normalized if F(∞) = 1,G(∞) = k.

A generating pair equivalent to a complete one is complete, and every complete generating
pair is equivalent to a uniquely determined normalized pair. The adjoint of a complete
(normalized) generating pair is complete (normalized).

From now on we assume that (F,G) is a complete normalized generating pair. Then
much more can be said on the series of corresponding formal powers. We limit ourselves to the
following completeness results (the expansion theorem and Runge’s approximation theorem
for pseudoanalytic functions).

Following [5] we shall say that a sequence of functions Wn converges normally in a
domain � if it converges uniformly on every bounded closed subdomain of �.

Theorem 26. Let W be an (F,G)-pseudoanalytic function defined for |z − z0| < R. Then it
admits a unique expansion of the form W(z) = ∑∞

n=0 Z(n)(an, z0; z) which converges normally
for |z − z0| < θR, where θ is a positive constant depending on the generating sequence.

The first version of this theorem was proved in [1]. We follow here [7].

Remark 27. Necessary and sufficient conditions for the relation θ = 1 are, unfortunately, not
known. However, in [7] the following sufficient conditions for the case when the generators
(F,G) possess partial derivatives are given. One such condition reads

|Fz(z)| + |Gz(z)| � const

1 + |z|1+ε

for some ε > 0. Another condition is∫ ∫
|z|<∞

(|Fz|2−ε + |Fz|2+ε + |Gz|2−ε + |Gz|2+ε) dx dy < ∞
for some 0 < ε < 1.

Theorem 28 [7]. A pseudoanalytic function defined in a simply connected domain can be
expanded into a normally convergent series of formal polynomials (linear combinations of
formal powers with positive exponents).

Remark 29. This theorem admits a direct generalization onto the case of a multiply connected
domain (see [7]).

In posterior works [11, 14, 22], deep results on interpolation and on the degree of
approximation by pseudopolynomials were obtained. For example,

Theorem 30 [22]. Let W be a pseudoanalytic function in a domain � bounded by a Jordan
curve and satisfy the Hölder condition on ∂� with the exponent α (0 < α � 1). Then for any
ε > 0 and any natural n there exists a pseudopolynomial of order n satisfying the inequality

|W(z) − Pn(z)| � const

nα−ε
for any z ∈ �

where the constant does not depend on n, but only on ε.

The primary aim of the next two sections is to show that

(1) all the mentioned results are of immediate application to equation (13),
(2) in many practically important situations the generating sequence and consequently the

formal powers Z(n), n = 0, 1, . . . , can be constructed explicitly.
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5. Complete systems of solutions for second-order equations

In what follows let us suppose that the scalar function f is defined in a somewhat bigger domain
�ε with a sufficiently smooth boundary. Then we change the function f for z ∈ �ε\� and
continue it over the whole plane in such a way that f ≡ 1 for large |z| (see [7]). In this way,
the generating pair (F,G) = (f, k/f ) becomes complete and normalized.

Then the following statements are direct corollaries of relations established in section 3
between pseudoanalytic functions (solutions of (18)) and solutions of second-order elliptic
equations and convergence theorems from the previous section.

Definition 31. Let u(z) be a given solution of equation (13) defined for small values of
|z − z0| and let W(z) be a solution of (18) constructed according to corollary 13 such that
ScW = p1/2u. The series

p−1/2(z)

∞∑
n=0

ScZ(n)(an, z0; z)

with the coefficients given by (38) is called the Taylor series of u at z0, formed with formal
powers.

In the rest of this section, we assume that all the coefficients in second-order equations
considered in section 3 are real-valued functions and the particular nonvanishing solution u0

of (13) is real valued as well.

Theorem 32. Let u(z) be a solution of (13) defined for |z − z0| < R. Then it admits a unique
expansion of the form

u(z) = p−1/2(z)

∞∑
n=0

Sc Z(n)(an, z0; z)

which converges normally for |z − z0| < R.

Proof. This is a direct consequence of theorem 26 and remark 27. Both necessary conditions
in remark 27 are fulfilled for the generating pair (24). �

Theorem 33. An arbitrary solution of (13) defined in a simply connected domain where there
exists a nonvanishing particular solution u0 can be expanded into a normally convergent series
of formal polynomials multiplied by p−1/2.

Proof. This is a direct corollary of theorem 28. �

More precisely the last theorem has the following meaning. Due to property 2 of formal
powers we have that Z(n)(a, z0; z) for any Taylor coefficient a can be easily expressed
through Z(n)(1, z0; z) and Z(n)(k, z0; z). Then due to theorem 28 any solution W of (18)
can be expanded into a normally convergent series of linear combinations of Z(n)(1, z0; z) and
Z(n)(k, z0; z). Consequently, any solution of (13) can be expanded into a normally convergent
series of linear combinations of scalar parts of Z(n)(1, z0; z) and Z(n)(k, z0; z) multiplied
by p−1/2.

Obviously, for solutions of (13) the results on the interpolation and on the degree of
approximation like, e.g., theorem 30, are also valid.

Let us stress that theorem 33 gives us the following result. The functions

{p−1/2(z)Sc Z(n)(1, z0; z), p−1/2(z)Sc Z(n)(k, z0; z)}∞n=0 (41)
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represent a complete system of solutions of (13) in the sense that any solution of (13) can be
represented by a normally convergent series formed by functions (41) in any simply connected
domain � where a positive solution of (13) exists. Moreover, as we show in the next section,
in many practically interesting situations these functions can be constructed explicitly.

6. Explicit construction of positive formal powers

The book [5] (see also [10, supplement to chapter 4]) contains explicit formulae for the
calculation of positive formal powers in the case when F and G have the form

F =
(

γ (x)

τ(y)

)1/2

and G = k

(
γ (x)

τ(y)

)−1/2

.

In [18] the class of generating pairs for which the generating sequence and hence the
corresponding formal powers can be constructed explicitly was substantially extended. For
the generating pair of the form (24) it is possible when f fulfils the following condition.

Condition 34 (condition S) [18]. Let f be a scalar function of some real variable ρ = ρ(x, y) :
f = f (ρ) such that the expression �ρ

|∇ρ|2 is a function of ρ. We denote it by s(ρ) = �ρ

|∇ρ|2 .

Besides the obvious example of any harmonic function ρ and as a consequence of ρ being
a Cartesian variable or ρ = arg z = arctan(y/x), there are many other practically important
examples of ρ satisfying condition S. An important example is ρ(x, y) =

√
x2 + y2. In this

case s(ρ) = 1
ρ

. The parabolic coordinate ρ(x, y) =
√

x2 + y2 + x also fulfils condition S:

s(ρ) = 1
2ρ

. Elliptic coordinates fulfil condition S as well (see [18]). In fact, as we will
discuss in detail in a forthcoming publication, condition S can be interpreted as follows. Let
ξ = ξ(x, y) and η = η(x, y) represent an arbitrary orthogonal coordinate system on the plane
and ρ be an arbitrary (nonconstant) twice differentiable real-valued function of ξ or of η. Then
f = f (ρ) satisfies the condition S.

Denote by S an antiderivative of s with respect to ρ.

Theorem 35 [18]. Let f be a scalar function of a real variable ρ satisfying condition S
and let the function ϕ = ke−Sρz have no zeros and be bounded in �. Then the generating
pair (F,G) with F = f and G = k/f is embedded in the generating sequence (Fm,Gm),
m = 0,±1,±2, . . . , with Fm = ϕmF and Gm = ϕmG.

This result opens the way for explicit construction of positive formal powers for
equation (18) and as a consequence of the complete system of solutions (41) for
equation (13).

Some examples of explicitly constructed formal powers were given in [18]. Here, we
show another quite simple but illustrative example.

Example 36. Consider the Helmholtz equation

(−� + c2)u = 0 (42)

with c being a real constant. Take the following particular solution of (42): f = ecy . Let us
construct the first few corresponding formal powers with centre at the origin. We have

Z(0)(1, 0; z) = ecy, Z(0)(k, 0; z) = k e−cy,

Z(1)(1, 0; z) = x ecy +
k sinh(cy)

c
, Z(1)(k, 0; z) = − sinh(cy)

c
+ kx e−cy,
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Z(2)(1, 0; z) =
(
x2 − y

c

)
ecy +

sinh(cy)

c2
+

2kx sinh(cy)

c
,

Z(2)(k, 0; z) = −2x sinh(cy)

c
+ k

((
x2 +

y

c

)
e−cy − sinh(cy)

c2

)
, . . . .

It is a simple exercise to verify that indeed the asymptotic formulae (36) hold. Now taking
scalar parts of the formal powers we obtain a complete system of solutions of the Helmholtz
equation:

u1(x, y) = ecy, u2(x, y) = x ecy, u3(x, y) = − sinh(cy)

c
,

u4(x, y) =
(
x2 − y

c

)
ecy +

sinh(cy)

c2
, u5(x, y) = −2x sinh(cy)

c
, . . . .

Formal powers of higher order can be constructed explicitly using a computer system of
symbolic calculation. For this particular example (together with Maria Rosalı́a Tenorio)
Matlab 6.5 allowed us to obtain analytic expressions for the formal powers up to the order 10
that gave us the first 21 functions u1, . . . , u21. We used them for a numerical solution of the
Dirichlet problem for the Helmholtz equation with very satisfactory results. For example, in
the case when � is a unit disc with centre at the origin, c = 1 and u on the boundary is equal to
ex (this test exact solution gave us the worst precision because of its obvious ‘disparateness’
from functions u1, u2 . . .) the maximal error maxz∈� |u(z)− ũ(z)| where u is the exact solution
and ũ = ∑21

n=1 anun, the real constants an being found by the collocation method, was of order
10−7. A very fast convergence of the method was observed.

Although the numerical method based on the usage of explicitly or numerically constructed
pseudoanalytic formal powers still needs a much more detailed analysis, these first results
show us that it is quite possible that in due time and with a further development of symbolic
calculation systems it can rank high among other numerical approaches, especially for solving
equations (8) or (13) with rapidly varying coefficients, when finite-difference methods fail.

7. Reduction of the multidimensional second-order equation to a first-order equation

Here, we consider the case of dimension n = 3 and in the final part of this section we show
that a simple generalization gives us the same results in higher dimensions.

We will consider the algebra H(C) of complex quaternions or biquaternions which have
the form Q = Q0+ Q1i + Q2j + Q3k, where {Qk} ⊂ C, and i, j, k are the quaternionic
imaginary units.

The vectorial representation of a complex quaternion will be used. Namely, each complex
quaternion Q is a sum of a scalar Q0 and of a vector Q:

Q = Sc(Q) + Vec(Q) = Q0 + Q,

where Q = Q1i + Q2j + Q3k. The operator of quaternionic conjugation we denote by CH :
Q = CHQ = Q0 − Q. We conserve the bar for the quaternionic conjugation which should
not provoke any confusion with the same notation for the conjugation in the first part of the
paper because essentially it can be considered as the same operation if the bicomplex numbers
are considered being embedded in H(C) in a natural way.

The purely vectorial complex quaternions (Sc(Q) = 0) are identified with vectors from
C

3. Note that Q2 = −〈Q, Q〉 where 〈·, ·〉 denotes the usual scalar product.
By MP we denote the operator of multiplication by a complex quaternion P from the

right-hand side: MP Q = Q · P . More information on the structure of the algebra of complex
quaternions can be found, for example, in [16] or [21].
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Let Q be a complex quaternion-valued differentiable function of x = (x, y, z). Denote

DQ = i
∂

∂x
Q + j

∂

∂y
Q + k

∂

∂z
Q.

This expression can be rewritten in a vector form as follows:

DQ = −div Q + grad Q0 + rot Q.

That is, Sc (DQ) = −div Q and Vec(DQ) = gradQ0 + rot Q. Let us note that D2 = −�. If
Q0 is a scalar function then DQ0 coincides with gradQ0.

The following generalization of Leibniz’s rule can be proved by a direct calculation
(see [12, p 24]).

Theorem 37 (generalized Leibniz rule). Let {P,Q} ⊂ C1(G; H(C)), where G is some domain
in R

3. Then

D[P · Q] = D[P ] · Q + P · D[Q] + 2(Sc(PD))[Q], (43)

where

(Sc(PD))[Q] := −
3∑

j=1

Pj∂jQ.

We will actively use the following:

Remark 38. If in theorem 37 Vec(P ) = 0, that is P = P0, then

D[P0 · Q] = D[P0] · Q + P0 · D[Q]. (44)

From this equality we obtain that the operator D + gradP0

P0
can be factorized as follows:(

D +
gradP0

P0

)
Q = P −1

0 D(P0 · Q). (45)

Let G be a complex-valued vector such that rot G ≡ 0. Then the complex-valued scalar
function ϕ is said to be its antigradient if grad ϕ = G. We will write ϕ = A[G]. The operator
A is a simple generalization of the usual antiderivative and of the operator A (see section 2),
and it defines the function ϕ up to an arbitrary constant. Its explicit representation is well
known and has the form

A[G](x, y, z) =
∫ x

x0

G1(ξ, y0, z0) dξ +
∫ y

y0

G2(x, ζ, z0) dζ +
∫ z

z0

G3(x, y, η) dη + C.

Consider

(−� + ν)g = 0 in G (46)

where � = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , ν and g are the complex-valued functions, and G is a domain in

R
3. We assume that g is twice continuously differentiable.

Theorem 39. Let f be a nonvanishing particular solution of (46). Then for any scalar twice
continuously differentiable function g the following equality holds:(

D + M
Df

f

)(
D − M

Df

f

)
g = (−� + ν)g. (47)

Proof. This is a direct calculation based on the Leibniz rule (44). �
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Remark 40. The factorization (47) was obtained in [3, 4] in a form which required a solution
of an associated biquaternionic Riccati equation. In [15] it was shown that the solution has
necessarily the form Df/f with f being a solution of (46).

Remark 41. Theorem 39 generalizes theorem 1. In a two-dimensional situation (47) reduces
to (9).

Remark 42. As g in (47) is a scalar function, the factorization of the Schrödinger operator
can be written in the following form:(

D + M
Df

f

)
f D(f −1g) = (−� + ν)g,

from which it is obvious that if g is a solution of (46) then the vector F = f D(f −1g) is a
solution of (

D + M
Df

f

)
F = 0 in G. (48)

The inverse result we formulate as the following statement.

Theorem 43. Let F be a solution of (48) in a simply connected domain G. Then g = fA[f −1F]
is a solution of (46).

Proof. First, in order to apply the operator A to the vector f −1F we should ascertain that
indeed

rot(f −1F) = 0. (49)

For this, consider the vector part of (48). It has the form

rot F +

[
F × Df

f

]
= 0

which is equivalent to equation (49).
Now, applying the Laplacian to g = fA[f −1F] and taking into account that f is a

solution of (46) and F is a solution of (48) we obtain the result

−�g = D2g = D(Df · A[f −1F] + F)

= f −1FDf − A[f −1F]�f + DF

= F
Df

f
− νfA[f −1F] − F

Df

f

= −νg. �

In the same way as in section 3 we obtain the factorization of the operator divp grad + q

where div and grad are already operators with respect to three independent variables.

Theorem 44. Let u0 be a nonvanishing particular solution of

(divp grad + q)u = 0 in G ⊂ R
3 (50)

with p, q and u being complex-valued functions, p ∈ C2(G) and p �= 0 in G. Then for any
scalar function ϕ ∈ C2(G) the following equality holds:

(divp grad + q)ϕ = −p1/2
(
D + M

Df

f

)(
D − M

Df

f

)
p1/2ϕ (51)

where f = p1/2u0.

Proof. This is analogous to the proof of theorem 3. �
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Thus, if u is a solution of equation (50) then

F = f D(f −1p1/2u) = f D
(
u−1

0 u
)

is a solution of equation (48) (see remark 42). The inverse result has the following form.

Theorem 45. Let F be a solution of equation (48) in a simply connected domain G, where
f = p1/2u0 and u0 be a nonvanishing particular solution of (50). Then

u = u0A[f −1F]

is a solution of (50).

Proof. This is a corollary of theorem 43 and relation (divp grad + q) = p1/2(� − ν)p1/2

where ν = �f/f . �

Note that due to the fact that in (51) ϕ is scalar, we can rewrite the equality in the form

(divp grad + q)ϕ = −p1/2
(
D + M

Df

f

) (
D − Df

f
CH

)
p1/2ϕ.

Now, consider (
D − Df

f
CH

)
W = 0, (52)

where W is an H(C)-valued function. Equation (52) is a direct generalization of the Vekua
equation (18). Moreover, we show that it preserves some important properties of (18).

Theorem 46. Let W = W0 + W be a solution of (52). Then W0 is a solution of the stationary
Schrödinger equation

−�W0 + νW0 = 0, (53)

where ν = �f/f . Moreover, the function u = f −1W0 is a solution of

div(f 2 grad u) = 0 (54)

and the vector function v = f W is a solution of

rot(f −2 rot v) = 0. (55)

Proof. Equation (52) is equivalent to the system

div W +

〈∇f

f
, W

〉
= 0,

rot W +

[∇f

f
× W

]
+ ∇W0 − ∇f

f
W0 = 0

which can be rewritten in the form

div(f W) = 0, (56)

f −1rot(f W) + f grad(f −1W0) = 0. (57)

From (57) we obtain (54) and (55). Equation (53) is obtained from (54) and (12). �

Remark 47. Observe that the functions

F0 = f, F1 = i
f

, F2 = j
f

, F3 = k
f
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give us a generating quartet for equation (52). They are solutions of (52) and obviously any
H(C)-valued function W can be represented in the form

W =
3∑

j=0

ϕjFj ,

where ϕj are complex-valued functions. It is easy to verify that the function W is a solution
of (52) iff

3∑
j=0

(Dϕj )Fj = 0 (58)

in a complete analogy with the two-dimensional case (see remark 8). Denote

w = ϕ0 + ϕ1i + ϕ2j + ϕ3k.

Then (58) can be written as follows:

D(w + w)f + D(w − w)
1

f
= 0

which is equivalent to

Dw = 1 − f 2

1 + f 2
Dw.

Remark 48. The results of this section remain valid in the n-dimensional situation if instead
of quaternions the Clifford algebra Cl0,n (see, e.g., [8], [13]) is considered. The operator D
is then introduced as follows D = ∑n

j=1 ej
∂

∂xj
where ej are the basic basis elements of the

Clifford algebra.

8. Conclusions

We showed the possibility of a factorization of the operator (divp grad + q) and investigated
only some of its applications. In a two-dimensional situation under quite general assumptions
a complete system of null solutions of the operator can be constructed explicitly. It is quite
possible that in a multidimensional case using the results of the preceding section the same can
be done. This requires a multidimensional generalization of Bers’ theory of formal powers.

Another open question is the proof of expansion and convergence theorems for the
bicomplex Vekua equation of the form (18).
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[12] Gürlebeck K and Sprößig W 1989 Quaternionic Analysis and Elliptic Boundary Value Problems (Berlin:

Akademie)
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